Matricial difference schemes for integrating stiff systems of ordinary differential equations
نویسندگان
چکیده
منابع مشابه
Nonstandard finite difference schemes for differential equations
In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...
متن کاملnonstandard finite difference schemes for differential equations
in this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (nsfds). numerical examples confirming then efficiency of schemes, for some differential equations are provided. in order toillustrate the accuracy of the new nsfds, the numerical results are compared with s...
متن کاملExponential Fitting of Matricial Multistep Methods for Ordinary Differential Equations
We study a class of explicit or implicit multistep integration formulas for solving N X N systems of ordinary differential equations. The coefficients of these formulas are diagonal matrices of order N, depending on a diagonal matrix of parameters Q of the same order. By definition, the formulas considered here are exact with respect to y = Dy + 4>(x, y) provided Q — hD, h is the integration st...
متن کاملIntegration of Partitioned Stiff Systems of Ordinary Differential Equations
Abstract. Partitioned systems of ordinary differential equations are in qualitative terms characterized as monotonically max-norm stable if each sub-system is stable and if the couplings from one sub-system to the others are weak. Each sub-system of the partitioned system may be discretized independently by the backward Euler formula using solution values from the other sub-systems correspondin...
متن کاملOn convergence of higher order schemes for the projective integration method for stiff ordinary differential equations
We present a convergence proof for higher order implementations of the projective integration method (PI) for a class of deterministic multi-scale systems in which fast variables quickly settle on a slow manifold. The error is shown to contain contributions associated with the length of the microsolver, the numerical accuracy of the macrosolver and the distance from the slow manifold caused by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1971
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1971-0301939-8